Rewiring climate modeling with machine learning emulators

Home Environment Connectz Rewiring climate modeling with machine learning emulators
Rewiring climate modeling with machine learning emulators

  • Eyring, V. et al. Pushing the frontiers in climate modelling and analysis with machine learning. Nat. Clim. Change 14, 916–928 (2024).

    Article 

    Google Scholar
     

  • Bordoni, S., Kang, S., Shaw, T. A., Simpson, I. & Zanna, L. The futures of climate modeling. npj Clim. Atmos. Sci. 8, 99 (2025).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).

  • Schneider, T. et al. Harnessing AI and computing to advance climate modelling and prediction. Nat. Clim. Change 13, 887–889 (2023).

    Article 

    Google Scholar
     

  • Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).

    Article 

    Google Scholar
     

  • Tebaldi, C., Snyder, A. & Dorheim, K. STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations. Earth Syst. Dyn. Discuss. 2022, 1–58 (2022).


    Google Scholar
     

  • Holden, P. B., Edwards, N. R., Hensman, J. & Wilkinson, R. D. ABC for Climate: Dealing with Expensive Simulators. In Sisson, S. A., Fan, Y. & Beaumont, M. (eds.) Handbook of approximate Bayesian computation, 569–595 (Chapman and Hall/CRC, Boca Raton, FL, 2018).

  • Hartin, C. A., Patel, P., Schwarber, A., Link, R. P. & Bond-Lamberty, B. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0. Geosci. Model Dev. 8, 939–955 (2015).

    Article 

    Google Scholar
     

  • Nicholls, Z. R. et al. Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).

    Article 

    Google Scholar
     

  • Kikstra, J. S. et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geosci. Model Dev. 15, 9075–9109 (2022).

    Article 

    Google Scholar
     

  • Watt-Meyer, O. et al. ACE: A fast, skillful learned global atmospheric model for climate prediction. In Tackling Climate Change with Machine Learning Workshop, Conference on Neural Information Processing Systems (NeurIPS) (2023).

  • Watt-Meyer, O. et al. ACE2: accurately learning subseasonal to decadal atmospheric variability and forced responses. npj Clim. Atmos. Sci. 8, 205 (2025).

    Article 

    Google Scholar
     

  • Nicklas, J. M., Fox-Kemper, B. & Lawrence, C. Efficient estimation of climate state and its uncertainty using Kalman filtering with application to policy thresholds and volcanism. J. Clim. 38, 1235–1270 (2025).

    Article 

    Google Scholar
     

  • Wu, E. et al. Applying the ACE2 emulator to SST green’s functions for the E3SMv3 global atmosphere model. JGR: Machine Learning and Computation. 2, e2025JH000774 (2025).

  • Guan, H., Arcomano, T., Chattopadhyay, A. & Maulik, R. LUCIE: A Lightweight Uncoupled ClImate Emulator with long-term stability and physical consistency for O(1000)-member ensembles. In Machine Learning for Earth System Modeling Workshop, International Conference on Machine Learning (ICML) (2024).

  • Mathison, C. et al. A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME). Geosci. Model Dev. 18, 1785–1808 (2025).

    Article 

    Google Scholar
     

  • Kitsios, V., O’Kane, T. J. & Newth, D. A machine learning approach to rapidly project climate responses under a multitude of net-zero emission pathways. Commun. Earth Environ. 4, 355 (2023).

    Article 

    Google Scholar
     

  • Tebaldi, C., Selin, N., Ferrari, R. & Flierl, G. Emulators of Climate Model Output. Annual Review of Environment and Resources. 50 (2025).

  • De Burgh-Day, C. O. & Leeuwenburg, T. Machine learning for numerical weather and climate modelling: a review. Geosci. Model Dev. 16, 6433–6477 (2023).

    Article 

    Google Scholar
     

  • Dunne, J. P. et al. An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and Fast Track in support of future climate assessment. EGUsphere 2024, 1–51 (2024).


    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar
     

  • Balaji, V. et al. Are general circulation models obsolete? Proc. Natl. Acad. Sci. 119, e2202075119 (2022).

    Article 

    Google Scholar
     

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 

    Google Scholar
     

  • Tebaldi, C. & Arblaster, J. M. Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Clim. Change 122, 459–471 (2014).

    Article 

    Google Scholar
     

  • Beusch, L., Gudmundsson, L. & Seneviratne, S. I. Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land. Earth Syst. Dyn. 11, 139–159 (2020).

    Article 

    Google Scholar
     

  • Lee, L., Carslaw, K., Pringle, K., Mann, G. & Spracklen, D. Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys. 11, 12253–12273 (2011).

    Article 

    Google Scholar
     

  • Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    Article 

    Google Scholar
     

  • Bocquet, M. Surrogate modeling for the climate sciences dynamics with machine learning and data assimilation. Front. Appl. Math. Stat. 9, 1133226 (2023).

    Article 

    Google Scholar
     

  • Van Katwyk, P., Fox-Kemper, B., Seroussi, H., Nowicki, S. & Bergen, K. J. A Variational LSTM Emulator of Sea Level Contribution From the Antarctic Ice Sheet. J. Adv. Model. Earth Syst. 15, e2023MS003899 (2023).

    Article 

    Google Scholar
     

  • Gasser, T. et al. Historical co2 emissions from land use and land cover change and their uncertainty. Biogeosciences 17, 4075–4101 (2020).

    Article 

    Google Scholar
     

  • Nicholls, R. J. et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 11, 338–342 (2021).

    Article 

    Google Scholar
     

  • Quilcaille, Y., Gasser, T., Ciais, P. & Boucher, O. Cmip6 simulations with the compact earth system model oscar v3.1. Geosci. Model Dev. 16, 1129–1161 (2023).

    Article 

    Google Scholar
     

  • Zhou, L. et al. Toward Convective-Scale Prediction within the Next Generation Global Prediction System. Bull. Am. Meteorol. Soc. 100, 1225–1243 (2019).

    Article 

    Google Scholar
     

  • Addison, H., Kendon, E., Ravuri, S., Aitchison, L. & Watson, P. A. Machine learning emulation of a local-scale UK climate model. In Tackling Climate Change with Machine Learning workshop at NeurIPS 2022 (2022).

  • Addison, H., Kendon, E., Ravuri, S., Aitchison, L. & Watson, P. A. Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model. arXiv preprint arXiv:2407.14158 (2024).

  • Van Katwyk, P., Fox-Kemper, B., Nowicki, S., Seroussi, H. & Bergen, K. J. Iseflow v1.0: A flow-based neural network emulator for improved sea level projections and uncertainty quantification. EGUsphere 2025, 1–32 (2025).


    Google Scholar
     

  • Wu, B., Zheng, S., Li, S. & Wang, S. Neural emulator based on physical fields for accelerating the simulation of surface chlorophyll in an Earth System Model. Ocean Model. 102491 (2025).

  • Bassetti, S., Hutchinson, B., Tebaldi, C. & Kravitz, B. DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models. J. Adv. Model. Earth Syst. 16, e2023MS004194 (2024).

    Article 

    Google Scholar
     

  • Cachay, S. R., Ramesh, V., Cole, J., Barker, H. & Rolnick, D. ClimART: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, vol. 1 (2021).

  • Beucler, T. et al. Climate-invariant machine learning. Sci. Adv. 10, eadj7250 (2024).

    Article 

    Google Scholar
     

  • Perezhogin, P., Zhang, C., Adcroft, A., Fernandez-Granda, C. & Zanna, L. A stable implementation of a data-driven scale-aware mesoscale parameterization. J. Adv. Model. Earth Syst. 16, e2023MS004104 (2024).

    Article 

    Google Scholar
     

  • Smith, C. J. et al. Fair v1. 3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    Article 

    Google Scholar
     

  • Lai, C.-Y. et al. Machine Learning for Climate Physics and Simulations. Ann. Rev. Condens. Matter Phys. 16 (2024).

  • van Vuuren, D. et al. The Scenario Model Intercomparison Project for CMIP7 (ScenarioMIP-CMIP7). EGUsphere 2025, 1–38 (2025).


    Google Scholar
     

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar
     

  • Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).

    Article 

    Google Scholar
     

  • Jones, C. D. et al. C4MIP – the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Article 

    Google Scholar
     

  • Hausfather, Z. An assessment of current policy scenarios over the 21st century and the reduced plausibility of high-emissions pathways. Dialogues Clim. Change 2, 26–32 (2025).

    Article 

    Google Scholar
     

  • Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article 

    Google Scholar
     

  • Jones, C. G. et al. Bringing it all together: science priorities for improved understanding of Earth system change and to support international climate policy. Earth Syst. Dyn. 15, 1319–1351 (2024).

    Article 

    Google Scholar
     

  • Yang, Q., Elsaesser, G. S., Van Lier-Walqui, M. & Eidhammer, T. A simple emulator that enables interpretation of parameter-output relationships, applied to two climate model PPEs. J. Adv. Model. Earth Syst. 17, e2024MS004766 (2025).

    Article 

    Google Scholar
     

  • Hourdin, F. et al. Toward machine-assisted tuning avoiding the underestimation of uncertainty in climate change projections. Sci. Adv. 9, eadf2758 (2023).

    Article 

    Google Scholar
     

  • Fu, L.-L. et al. The surface water and ocean topography mission: A breakthrough in radar remote sensing of the ocean and land surface water. Geophys. Res. Lett. 51, e2023GL107652 (2024).

    Article 

    Google Scholar
     

  • Durack, P. J. et al. The Coupled Model Intercomparison Project (CMIP): Reviewing project history, evolution, infrastructure and implementation. EGUsphere 2025, 1–74 (2025).


    Google Scholar
     

  • Cinquini, L. et al. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst. 36, 400–417 (2014).

    Article 

    Google Scholar
     

  • Hassell, D., Gregory, J., Blower, J., Lawrence, B. N. & Taylor, K. E. A data model of the climate and forecast metadata conventions (cf-1.6) with a software implementation (cf-python v2.1). Geosci. Model Dev. 10, 4619–4646 (2017).

    Article 

    Google Scholar
     

  • Juckes, M. et al. The CMIP6 Data Request (DREQ, version 01.00.31). Geosci. Model Dev. 13, 201–224 (2020).

    Article 

    Google Scholar
     

  • Dueben, P. D. et al. Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status, and outlook. Artif. Intell. Earth Syst. 1, e210002 (2022).


    Google Scholar
     

  • Watson-Parris, D. et al. ClimateBench v1. 0: A benchmark for data-driven climate projections. J. Adv. Model. Earth Syst. 14, e2021MS002954 (2022).

    Article 

    Google Scholar
     

  • Kaltenborn, J. et al. ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023).

  • Hoffman, F. M. et al. Rapid evaluation framework for the CMIP7 assessment fast track. EGUsphere 2025, 1–57 (2025).


    Google Scholar
     

  • Lütjens, B., Ferrari, R., Watson-Parris, D. & Selin, N. E. The impact of internal variability on benchmarking deep learning climate emulators. J. Adv. Model. Earth Syst. 17, e2024MS004619 (2025).

    Article 

    Google Scholar
     

  • Ullrich, P. A. et al. Recommendations for comprehensive and independent evaluation of machine learning-based Earth system models. J. Geophys. Res.: Mach. Learn. Comput. 2, e2024JH000496 (2025).


    Google Scholar
     

  • Woollam, J. et al. SeisBench-a toolbox for machine learning in seismology. Seismol. Res. Lett. 93, 1695–1709 (2022).

    Article 

    Google Scholar
     

  • Münchmeyer, J. et al. Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J. Geophys. Res.: Solid Earth 127, e2021JB023499 (2022).

    Article 

    Google Scholar
     

  • Wilson, G. et al. Best practices for scientific computing. PLOS Biol. 12, e1001745 (2014).

    Article 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).


    Google Scholar
     

  • Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5 (2017).

  • Kurth, T. et al. FourCastNet: Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators. PASC ’23: Proceedings of the Platform for Advanced Scientific Computing Conference, 13. (ACM, New York, NY, 2023).

  • Duncan, J. P. C. et al. Application of the AI2 climate emulator to E3SMv2’s global atmosphere model, with a focus on precipitation fidelity. J. Geophys. Res.: Mach. Learn. Comput. 1, e2024JH000136 (2024).


    Google Scholar
     

  • Kent, C. et al. Skilful global seasonal predictions from a machine learning weather model trained on reanalysis data. npj Clim. Atmos. Sci. 8, 314 (2025).

  • Kopp, R. E. et al. The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change. Geosci. Model Dev. 16, 7461–7489 (2023).

    Article 

    Google Scholar
     

  • Nicholls, Z. R. J. et al. Reduced complexity model intercomparison project phase 1: introduction and evaluation of global-mean temperature response. Geosci. Model Dev. 13, 5175–5190 (2020).

    Article 

    Google Scholar
     

  • Windisch, M. et al. Fastmip-coordinating experiments of regional emulators for intercomparison and fast regional projections. In AGU Fall Meeting Abstracts, vol. 2024, GC01–113 (2024).

  • Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Article 

    Google Scholar
     

  • Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

    Article 

    Google Scholar
     

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).

  • Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: A foundation model for weather and climate. In Proceedings of the 40th International Conference on Machine Learning (ICML), vol. 202 of Proceedings of Machine Learning Research (PMLR), 25904–25938 https://proceedings.mlr.press/v202/nguyen23a.html (2023).

  • Kochkov, D. et al. Neural general circulation models for weather and climate. Nature 632, 1060–1066 (2024).

    Article 

    Google Scholar
     

  • Holden, P. B. & Edwards, N. R. Dimensionally reduced emulation of an AOGCM for application to integrated assessment modelling. Geophys. Res. Lett. 37 (2010).

  • Castruccio, S. et al. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs. J. Clim. 27, 1829–1844 (2014).

    Article 

    Google Scholar
     

  • Geoffroy, O. et al. Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs. J. Clim. 26, 1859–1876 (2013).

    Article 

    Google Scholar
     

  • Mitchell, T. D. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates. Clim. Change 60, 217–242 (2003).

    Article 

    Google Scholar
     

  • Kravitz, B. & Snyder, A. Pangeo-Enabled ESM Pattern Scaling (PEEPS): A customizable dataset of emulated Earth System Model output. PLOS Clim. 2, e0000159 (2023).

    Article 

    Google Scholar
     

  • Nath, S., Lejeune, Q., Beusch, L., Schleussner, C.-F. & Seneviratne, S. I. MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth Syst. Dyn. Discuss. 2021, 1–38 (2021).


    Google Scholar
     

  • Carzon, J. et al. Statistical constraints on climate model parameters using a scalable cloud-based inference framework. Environ. Data Sci. 2, e24 (2023).

    Article 

    Google Scholar
     

  • Baker, E., Harper, A. B., Williamson, D. & Challenor, P. Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES. Geosci. Model Dev. 15, 1913–1929 (2022).

    Article 

    Google Scholar
     

  • Ming, D., Williamson, D. & Guillas, S. Deep Gaussian process emulation using stochastic imputation. Technometrics 65, 150–161 (2023).

    Article 

    Google Scholar
     

  • Cachay, S. R., Henn, B., Watt-Meyer, O., Bretherton, C. S. & Yu, R. Probabilistic Emulation of a Global Climate Model with Spherical DYffusion. In Conference on Neural Information Processing Systems (NeurIPS) (2024).

  • Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

    Article 

    Google Scholar
     

  • Dheeshjith, S. et al. Samudra: An AI Global Ocean Emulator for Climate. Geophys. Res. Lett. 52, e2024GL114318 (2025).

    Article 

    Google Scholar
     

  • George, T. M., Manucharyan, G. E. & Thompson, A. F. Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence. Nat. Commun. 12, 800 (2021).

    Article 

    Google Scholar
     

  • Bolton, T. & Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 11, 376–399 (2019).

    Article 

    Google Scholar
     

  • Palmer, M. D., Harris, G. R. & Gregory, J. M. Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator. Environ. Res. Lett. 13, 084003 (2018).

    Article 

    Google Scholar
     

  • Tang, G., Nicholls, Z., Norton, A., Zaehle, S. & Meinshausen, M. Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0. Geosci. Model Dev. 18, 2193–2230 (2025).

    Article 

    Google Scholar
     

  • Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. & Ciais, P. The compact Earth system model OSCAR v2.2: description and first results. Geosci. Model Dev. 10, 271–319 (2017).

    Article 

    Google Scholar
     

  • Source link

    Leave a Reply

    Your email address will not be published.

    css.php