Cutting-edge treatments in amyotrophic lateral sclerosis: the role of molecular pathogenesis in targeted therapies | Stem Cell Research & Therapy

  • Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363–80.


    Google Scholar
     

  • Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.


    Google Scholar
     

  • Petrucelli L, Gitler AD. Unlocking the mystery of ALS. Sci Am. 2017;316(6):46–51.


    Google Scholar
     

  • Mehta P, Raymond J, Nair T, Han M, Berry J, Punjani R et al. Amyotrophic lateral sclerosis estimated prevalence cases from 2022 to 2030, data from the National ALS registry. Amyotroph Lateral Scler Frontotemporal Degeneration. 2025:1–6.

  • Seals RM, Hansen J, Gredal O, Weisskopf MG. Age-period-cohort analysis of trends in amyotrophic lateral sclerosis in Denmark, 1970–2009. Am J Epidemiol. 2013;178(8):1265–71.


    Google Scholar
     

  • Chio A. Risk factors in the early diagnosis of ALS: European epidemiological studies. Amyotroph Lateral Scler Other Motor Neuron Disorders. 2000;1(sup1):S13–8.


    Google Scholar
     

  • French PW, Ludowyke RI, Guillemin GJ. Fungal-contaminated grass and well water and sporadic amyotrophic lateral sclerosis. Neural Regeneration Res. 2019;14(9):1490–3.


    Google Scholar
     

  • Vinceti M, Bottecchi I, Fan A, Finkelstein Y, Mandrioli J. Are environmental exposures to selenium, heavy metals, and pesticides risk factors for amyotrophic lateral sclerosis? 2012.

  • Banack SA, Caller TA, Stommel EW. The cyanobacteria derived toxin beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins. 2010;2(12):2837–50.


    Google Scholar
     

  • Wang H, O’Reilly ÉJ, Weisskopf MG, Logroscino G, McCullough ML, Thun MJ, et al. Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch Neurol. 2011;68(2):207–13.


    Google Scholar
     

  • Chapman L, Cooper-Knock J, Shaw PJ. Physical activity as an exogenous risk factor for amyotrophic lateral sclerosis: a review of the evidence. Brain. 2023;146(5):1745–57.


    Google Scholar
     

  • Gu A, Zhang Y, He J, Zhao M, Ding L, Liu W, et al. Chronic oxidative stress and stress granule formation in UBQLN2 ALS neurons: insights into neuronal degeneration and potential therapeutic targets. Int J Mol Sci. 2024;25(24):13448.


    Google Scholar
     

  • Oda M, Izumi Y, Kaji R. Gene mutations in Familial amyotrophic lateral sclerosis. Brain Nerve = Shinkei Kenkyu No Shinpo. 2011;63(2):165–70.


    Google Scholar
     

  • Millecamps S, Boillée S, Le Ber I, Seilhean D, Teyssou E, Giraudeau M, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet. 2012;49(4):258–63.


    Google Scholar
     

  • Abramzon YA, Fratta P, Traynor BJ, Chia R. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front NeuroSci. 2020;14:42.


    Google Scholar
     

  • Fang T, Je G, Pacut P, Keyhanian K, Gao J, Ghasemi M. Gene therapy in amyotrophic lateral sclerosis. Cells. 2022;11(13):2066.


    Google Scholar
     

  • Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as hallmarks of impaired gene expression, proteostasis and mitochondrial function in amyotrophic lateral sclerosis. Front NeuroSci. 2021;15:783624.


    Google Scholar
     

  • Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812–26.


    Google Scholar
     

  • Scarian E, Fiamingo G, Diamanti L, Palmieri I, Gagliardi S, Pansarasa O. The role of VCP mutations in the spectrum of amyotrophic lateral sclerosis—frontotemporal dementia. Front Neurol. 2022;13:841394.


    Google Scholar
     

  • Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the Art and research perspectives. Int J Mol Sci. 2013;14(8):15286–311.


    Google Scholar
     

  • Hernan-Godoy M, Rouaux C. From environment to gene expression: epigenetic methylations and one-carbon metabolism in amyotrophic lateral sclerosis. Cells. 2024;13(11):967.


    Google Scholar
     

  • Kadena K, Vlamos P. Elucidating the epigenetic and protein interaction landscapes in amyotrophic lateral sclerosis: an integrated bioinformatics analysis. Sclerosis. 2024;2(3):140–55.


    Google Scholar
     

  • Dey B, Kumar A, Patel AB. Pathomechanistic networks of motor system injury in amyotrophic lateral sclerosis. Curr Neuropharmacol. 2024;22(11):1778–806.


    Google Scholar
     

  • Matamala JM, Moreno-Roco J, Acosta I, Hughes R, Lillo P, Casar JC, et al. Multidisciplinary care and therapeutic advances in amyotrophic lateral sclerosis. Rev Med Chil. 2022;150(12):1633–46.


    Google Scholar
     

  • Schultz J. Disease-modifying treatment of amyotrophic lateral sclerosis. Am J Manag Care. 2018;24(15 Suppl):S327–35.


    Google Scholar
     

  • Raymond J, Oskarsson B, Mehta P, Horton K. Clinical characteristics of a large cohort of US participants enrolled in the National amyotrophic lateral sclerosis (ALS) Registry, 2010–2015. Amyotroph Lateral Scler Frontotemporal Degeneration. 2019;20(5–6):413–20.


    Google Scholar
     

  • Walhout R, Verstraete E, Van Den Heuvel MP, Veldink JH, Van Den Berg LH. Patterns of symptom development in patients with motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degeneration. 2018;19(1–2):21–8.


    Google Scholar
     

  • Kim H-J, de Leon M, Wang X, Kim HY, Lee Y-J, Kim Y-H, et al. Relationship between clinical parameters and brain structure in sporadic amyotrophic lateral sclerosis patients according to onset type: a voxel-based morphometric study. PLoS ONE. 2017;12(1):e0168424.


    Google Scholar
     

  • Shoesmith CL, Findlater K, Rowe A, Strong MJ. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry. 2007;78(6):629–31.


    Google Scholar
     

  • Gautier G, Verschueren A, Monnier A, Attarian S, Salort-Campana E, Pouget J. ALS with respiratory onset: clinical features and effects of non-invasive ventilation on the prognosis. Amyotroph Lateral Scler. 2010;11(4):379–82.


    Google Scholar
     

  • Lee JW, Kang S-W, Choi WA. Clinical course of amyotrophic lateral sclerosis according to initial symptoms: an analysis of 500 cases. Yonsei Med J. 2021;62(4):338.


    Google Scholar
     

  • Statland JM, Barohn RJ, Dimachkie MM, Floeter MK, Mitsumoto H. Primary lateral sclerosis. Neurol Clin. 2015;33(4):749.


    Google Scholar
     

  • Gordon P, Cheng B, Katz I, Pinto M, Hays A, Mitsumoto H, et al. The natural history of primary lateral sclerosis. Neurology. 2006;66(5):647–53.


    Google Scholar
     

  • Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary lateral sclerosis: an overview. J Clin Med. 2024;13(2):578.


    Google Scholar
     

  • Liewluck T, Saperstein DS. Progressive muscular atrophy. Neurol Clin. 2015;33(4):761–73.


    Google Scholar
     

  • Kim W-K, Liu X, Sandner J, Pasmantier M, Andrews J, Rowland L, et al. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology. 2009;73(20):1686–92.


    Google Scholar
     

  • Wijesekera L, Mathers S, Talman P, Galtrey C, Parkinson M, Ganesalingam J, et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology. 2009;72(12):1087–94.


    Google Scholar
     

  • Zhang H, Chen L, Tian J, Fan D. Differentiating slowly progressive subtype of lower limb onset ALS from typical ALS depends on the time of disease progression and phenotype. Front Neurol. 2022;13:872500.


    Google Scholar
     

  • Corcia P, Bede P, Pradat P-F, Couratier P, Vucic S, de Carvalho M. Split-hand and split-limb phenomena in amyotrophic lateral sclerosis: pathophysiology, electrophysiology and clinical manifestations. J Neurol Neurosurg Psychiatry. 2021;92(10):1126–30.


    Google Scholar
     

  • Sonoo M, Takahashi K, Hamada Y, Hokkoku K, Kobayashi S. Split-finger syndrome in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2020;91(11):1235–6.


    Google Scholar
     

  • Jiang Q, Lin J, Wei Q, Yang T, Hou Y, Zhang L, et al. Amyotrophic lateral sclerosis patients with various gene mutations show diverse motor phenotypes and survival in China. J Med Genet. 2024;61(9):839–46.


    Google Scholar
     

  • Millecamps S, Salachas F, Cazeneuve C, Gordon P, Bricka B, Camuzat A, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in Familial amyotrophic lateral sclerosis: genotype–phenotype correlations. J Med Genet. 2010;47(8):554–60.


    Google Scholar
     

  • Manohar V, Crowley L, Sreedharan J. TARDBP-related amyotrophic lateral sclerosis-frontotemporal dementia. 2015.

  • Orban P, Devon RS, Hayden MR, Leavitt BR. Chapter 15 juvenile amyotrophic lateral sclerosis. Handb Clin Neurol. 2007;82:301–12.


    Google Scholar
     

  • Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and-independent mechanisms. Proceedings of the National Academy of Sciences. 2014;111(9):3620-5.

  • Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The key role of astrocytes in amyotrophic lateral sclerosis and their commitment to glutamate excitotoxicity. Int J Mol Sci. 2023;24(20):15430.


    Google Scholar
     

  • do Rêgo ACM, Araújo-Filho I. Cellular and molecular mechanisms in neurodegenerative disorders: A comprehensive scoping review. Int J Innovative Res Med Sci (IJIRMS). 2024;9(10).

  • Todd TW, Petrucelli L. Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem. 2016;138:145–62.


    Google Scholar
     

  • Babić Leko M, Župunski V, Kirincich J, Smilović D, Hortobágyi T, Hof PR, et al. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol. 2019;2019(1):2909168.


    Google Scholar
     

  • Kabashi E, Valdmanis PN, Dion P, Rouleau GA. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Annals of neurology. Official J Am Neurol Association Child Neurol Soc. 2007;62(6):553–9.


    Google Scholar
     

  • Takeuchi H, Kobayashi Y, Ishigaki S, Doyu M, Sobue G. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of Familial amyotrophic lateral sclerosis. J Biol Chem. 2002;277(52):50966–72.


    Google Scholar
     

  • Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, et al. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet. 2010;19(4):671–83.


    Google Scholar
     

  • Kon T, Mori F, Tanji K, Miki Y, Toyoshima Y, Yoshida M, et al. ALS-associated protein FIG4 is localized in P Ick and L Ewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology. 2014;34(1):19–26.


    Google Scholar
     

  • Zhao S, Chen R, Gao Y, Lu Y, Bai X, Zhang J. Fundamental roles of the optineurin gene in the molecular pathology of amyotrophic lateral sclerosis. Front NeuroSci. 2023;17:1319706.


    Google Scholar
     

  • Bagyinszky E, Hulme J, An SSA. Studies of genetic and proteomic risk factors of amyotrophic lateral sclerosis inspire biomarker development and gene therapy. Cells. 2023;12(15):1948.


    Google Scholar
     

  • Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, et al. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy. 2022;18(3):496–517.


    Google Scholar
     

  • Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, et al. Induction of the unfolded protein response in Familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem. 2006;281(40):30152–65.


    Google Scholar
     

  • Sasaki S. Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathology Experimental Neurol. 2010;69(4):346–55.


    Google Scholar
     

  • Santos LS, Moreira-de-Carvalho GOA, Fortes FSA, de Souza ALF. Autophagy Pathways, Ubiquitin-Proteasome system and neurodegenerative diseases: a scopus review. Brazilian J Biol Sci. 2025;12(26):e149–e.


    Google Scholar
     

  • Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci. 2016;8:303.


    Google Scholar
     

  • Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, et al. Mitochondrial medicine: A promising therapeutic option against various neurodegenerative disorders. Curr Neuropharmacol. 2023;21(5):1165–83.


    Google Scholar
     

  • Magrané J, Sahawneh MA, Przedborski S, Estévez ÁG, Manfredi G. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J Neurosci. 2012;32(1):229–42.


    Google Scholar
     

  • Burstein S, Valsecchi F, Kawamata H, Bourens M, Zeng R, Zuberi A, et al. In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum Mol Genet. 2018;27(1):160–77.


    Google Scholar
     

  • Edens BM, Miller N, Ma Y-C. Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci. 2016;10:44.


    Google Scholar
     

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226(10):2484–93.


    Google Scholar
     

  • Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve: Official J Am Association Electrodiagn Med. 2002;26(4):438–58.


    Google Scholar
     

  • Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A medicinal chemistry perspective on excitatory amino acid transporter 2 dysfunction in neurodegenerative diseases. J Med Chem. 2023;66(4):2330–46.


    Google Scholar
     

  • Kawahara Y, Kwak S. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Amyotroph Lateral Scler. 2005;6(3):131–44.


    Google Scholar
     

  • Bogaert E, d’Ydewalle C, Van Den Bosch L. Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target. CNS Neurol Disorders-Drug Targets-CNS Neurol Disorders. 2010;9(3):297–304.


    Google Scholar
     

  • Kaus A, Sareen D. ALS patient stem cells for unveiling disease signatures of motoneuron susceptibility: perspectives on the deadly mitochondria, ER stress and calcium triad. Front Cell Neurosci. 2015;9:448.


    Google Scholar
     

  • You J, Youssef MM, Santos JR, Lee J, Park J. Microglia and astrocytes in amyotrophic lateral sclerosis: disease-associated states, pathological roles, and therapeutic potential. Biology. 2023;12(10):1307.


    Google Scholar
     

  • Ziff OJ, Clarke BE, Taha DM, Crerar H, Luscombe NM, Patani R. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive States. Genome Res. 2022;32(1):71–84.


    Google Scholar
     

  • Shin JH, Cho SI, Lim HR, Lee JK, Lee YA, Noh JS, et al. Concurrent administration of Neu2000 and lithium produces marked improvement of motor neuron survival, motor function, and mortality in a mouse model of amyotrophic lateral sclerosis. Mol Pharmacol. 2007;71(4):965–75.


    Google Scholar
     

  • Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences. 2010;107(47):20523-8.

  • Ikenaka K, Katsuno M, Kawai K, Ishigaki S, Tanaka F, Sobue G. Disruption of axonal transport in motor neuron diseases. Int J Mol Sci. 2012;13(1):1225–38.


    Google Scholar
     

  • Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve. 2014;49(6):786–803.


    Google Scholar
     

  • Pérez-Brangulí F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, et al. Dysfunction of Spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet. 2014;23(18):4859–74.


    Google Scholar
     

  • Parveen S, Showkat F, Badesra N, Dar MS, Maqbool T, Dar MJ. Axonal Degeneration, impaired axonal Transport, and synaptic dysfunction in motor neuron Disorder. Mechanism and genetic susceptibility of neurological disorders. Springer; 2024. pp. 199–229.

  • Sako W, Ito H, Yoshida M, Koizumi H, Kamada M, Fujita K, et al. Nuclear factor κ B expression in patients with sporadic amyotrophic lateral sclerosis and hereditary amyotrophic lateral sclerosis with optineurin mutations. Clin Neuropathol. 2012;31(6):418–23.


    Google Scholar
     

  • Källstig EC. The role of the NF-kappaB pathway in amyotrophic lateral sclerosis pathogenesis. EPFL; 2023.

  • Fadaka AO, Ojo OA, Osukoya OA, Akuboh O, Ajiboye BO. Role of p38 MAPK signaling in neurodegenerative diseases: a mechanistic perspective. Ann Neurodegener Dis. 2017;2:1026.


    Google Scholar
     

  • Sahana T, Zhang K. Mitogen-activated protein kinase pathway in amyotrophic lateral sclerosis. Biomedicines. 2021;9(8):969.


    Google Scholar
     

  • N-M JA, LeS FdC, R-S F, Gomes N. Amyotrophic lateral sclerosis (ALS): an overview of genetic and metabolic signaling mechanisms. CNS Neurol Disorders-Drug Targets. 2025;24(2):83–90.


    Google Scholar
     

  • Sathasivam S, Ince P, Shaw P. Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol Appl Neurobiol. 2001;27(4):257–74.


    Google Scholar
     

  • Sathasivam S, Shaw PJ. Apoptosis in amyotrophic lateral sclerosis—what is the evidence? Lancet Neurol. 2005;4(8):500–9.


    Google Scholar
     

  • Saitoh Y, Takahashi Y. Riluzole for the treatment of amyotrophic lateral sclerosis. Neurodegenerative Disease Manage. 2020;10(6):343–55.


    Google Scholar
     

  • Fritz E, Izaurieta P, Weiss A, Mir FR, Rojas P, Gonzalez D, et al. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol. 2013;109(11):2803–14.


    Google Scholar
     

  • Cho H, Shukla S. Role of Edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals. 2020;14(1):29.


    Google Scholar
     

  • Yoshino H. Edaravone for the treatment of amyotrophic lateral sclerosis. Expert Rev Neurother. 2019;19(3):185–93.


    Google Scholar
     

  • Singh P, Belliveau P, Towle J, Neculau AE, Dima L. Edaravone oral suspension: a neuroprotective agent to treat amyotrophic lateral sclerosis. Am J Ther. 2024;31(3):e258–67.


    Google Scholar
     

  • Kutlubaev M. Promising approaches to the pathogenetic therapy of amyotrophic lateral sclerosis. Zhurnal Nevrologii I Psikhiatrii Imeni SS Korsakova. 2024;124(4):13–21.


    Google Scholar
     

  • Pressler M, Cooper P, Carter W, Mendelson A. ID: 205468 intrathecal Baclofen to improve functional status in ALS: A case report. Neuromodulation: Technol Neural Interface. 2023;26(4):S25.


    Google Scholar
     

  • McClelland IIIS, Bethoux FA, Boulis NM, Sutliff MH, Stough DK, Schwetz KM, et al. Intrathecal Baclofen for spasticity-related pain in amyotrophic lateral sclerosis: efficacy and factors associated with pain relief. Muscle Nerve: Official J Am Association Electrodiagn Med. 2008;37(3):396–8.


    Google Scholar
     

  • Reddy DS. Drug Therapy for Spasticity Disorders. Brody’s Human Pharmacology-E-Book: Brody’s Human Pharmacology-E-Book. 2024:207.

  • Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of Gabapentin in neuropathic pain. Arch Pharm Res. 2013;36:237–51.


    Google Scholar
     

  • Everett EA, Brizzi K. 33 pain in amyotrophic lateral sclerosis. Pain. 2022:277.

  • Kwak S. Pain in amyotrophic lateral sclerosis: a narrative review. J Yeungnam Med Sci. 2022;39(3):181–9.


    Google Scholar
     

  • Dubovsky SL. Dextromethorphan/quinidine for pseudobulbar affect. 2014.

  • Sun Y, Benatar M, Mascías Cadavid J, Ennist D, Wicks P, Staats K, et al. ALSUntangled# 71: nuedexta. Amyotroph Lateral Scler Frontotemporal Degeneration. 2024;25(1–2):218–22.


    Google Scholar
     

  • Moretz D. New Drug Evaluation: Dextromethorphan/Quinidine (NUEDEXTA), capsules. 2024.

  • Jafari Z, Mahood Q, Hamson A. Riluzole for amyotrophic lateral sclerosis treatment. Can J Health Technol. 2023;3(7).

  • Miller RG, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane database of systematic reviews. 2012(3).

  • Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is Edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.


    Google Scholar
     

  • Bhandari R, Kuhad A. Edaravone: a new hope for deadly amyotrophic lateral sclerosis. Drugs Today (Barcelona Spain: 1998). 2018;54(6):349–60.


    Google Scholar
     

  • Cho H-J, Park J-M, Park J-S. Improved bulbar function in amyotrophic lateral sclerosis after nuedexta (dextromethorphan and quinidine) treatment. J Korean Neurol Association. 2019;37(2):171–3.


    Google Scholar
     

  • da Silva MN, da Silva JVB, da Fonsêca NF, Oshiro Junior JA, Dantas Medeiros AC. An overview of analytical methods for the identification and quantification of Baclofen. Curr Pharm Anal. 2023;19(5):353–70.


    Google Scholar
     

  • Kent CN, Park C, Lindsley CW. Classics in chemical neuroscience: Baclofen. ACS Chem Neurosci. 2020;11(12):1740–55.


    Google Scholar
     

  • Romito JW, Turner ER, Rosener JA, Coldiron L, Udipi A, Nohrn L, et al. Baclofen therapeutics, toxicity, and withdrawal: a narrative review. SAGE Open Med. 2021;9:20503121211022197.


    Google Scholar
     

  • Krause T, Gerbershagen M, Fiege M, Weisshorn R, Wappler F. Dantrolene–a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364–73.


    Google Scholar
     

  • Dorst J, Ludolph AC, Huebers A. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis. Ther Adv Neurol Disord. 2018;11:1756285617734734.


    Google Scholar
     

  • Chang C, Ramphul K, Amantadine. 2018.

  • Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transmission (Vienna Austria: 1996). 2021;128(2):127–69.


    Google Scholar
     

  • Sills GJ. The mechanisms of action of Gabapentin and Pregabalin. Curr Opin Pharmacol. 2006;6(1):108–13.


    Google Scholar
     

  • McLean MJ. Gabapentin Epilepsia. 1995;36:S73–86.


    Google Scholar
     

  • Nicholson B. Gabapentin use in neuropathic pain syndromes. Acta Neurol Scand. 2000;101(6):359–71.


    Google Scholar
     

  • Wiffen PJ, McQuay HJ, Edwards J, Moore RA, Cochrane Pain P, Group SC. Gabapentin for acute and chronic pain. Cochrane Database Syst Reviews. 1996;2010(8).

  • Goslinga JA, Terrelonge M Jr, Bedlack R, Barkhaus P, Barnes B, Bertorini T, et al. ALSUntangled# 65: glucocorticoid corticosteroids. Amyotroph Lateral Scler Frontotemporal Degeneration. 2023;24(3–4):351–7.


    Google Scholar
     

  • Mullard A. Amylyx’s ALS therapy secures FDA approval, as regulatory flexibility Trumps underwhelming data. Nat Rev Drug Discovery. 2022;21(11):786.


    Google Scholar
     

  • Gordon PH. Amyotrophic lateral sclerosis: pathophysiology, diagnosis and management. CNS Drugs. 2011;25:1–15.


    Google Scholar
     

  • Weydt P, Weiss MD, Möller T, Carter GT. Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis. Current opinion in investigational drugs (London, England: 2000). 2002;3(12):1720-4.

  • Corbett AH, Lim ML, Kashuba AD. Kaletra (lopinavir/ritonavir). Ann Pharmacother. 2002;36(7–8):1193–203.


    Google Scholar
     

  • Alfahad T, Nath A. Retroviruses and amyotrophic lateral sclerosis. Antiviral Res. 2013;99(2):180–7.


    Google Scholar
     

  • Schoergenhofer C, Jilma B, Stimpfl T, Karolyi M, Zoufaly A. Pharmacokinetics of lopinavir and Ritonavir in patients hospitalized with coronavirus disease 2019 (COVID-19). Ann Intern Med. 2020;173(8):670–2.


    Google Scholar
     

  • [Available from: National Center for Biotechnology Information. (2025). PubChem Compound Summary for CID 92727, Lopinavir. Retrieved May 26, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Lopinavir

  • Liboux AL, Cachia JP, Kirkesseli S, Gautier JY, Guimart C, Montay G, et al. A comparison of the pharmacokinetics and tolerability of riluzole after repeat dose administration in healthy elderly and young volunteers. J Clin Pharmacol. 1999;39(5):480–6.


    Google Scholar
     

  • Wagner ML, Landis BE. Riluzole: a new agent for amyotrophic lateral sclerosis. Ann Pharmacother. 1997;31(6):738–44.


    Google Scholar
     

  • Jafari Z, Mahood Q, Hamson A. Riluzole for Amyotrophic Lateral Sclerosis Treatment: CADTH Health Technology Review. 2023.

  • Marquardt G, Seifert V. Use of intrathecal Baclofen for treatment of spasticity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2002;72(2):275–6.


    Google Scholar
     

  • Boussicault L, Laffaire J, Schmitt P, Rinaudo P, Callizot N, Nabirotchkin S, et al. Combination of acamprosate and Baclofen (PXT864) as a potential new therapy for amyotrophic lateral sclerosis. J Neurosci Res. 2020;98(12):2435–50.


    Google Scholar
     

  • Granfors MT, Backman JT, Laitila J, Neuvonen PJ. Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br J Clin Pharmacol. 2004;57(3):349–53.


    Google Scholar
     

  • Tse F, Jaffe J, Bhuta S. Pharmacokinetics of orally administered Tizanidine in healthy volunteers. Fundam Clin Pharmacol. 1987;1(6):479–88.


    Google Scholar
     

  • Brettschneider J, Kurent J, Ludolph A. Drug therapy for pain in amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Reviews. 2013(6).

  • Wang Y-p. Ma M-y. Advance in clinical application of Dantrolene. Int J Anesthesiology Resusc. 2009;30:252–4.


    Google Scholar
     

  • Finsterer J. Familiar amyotrophic lateral sclerosis. New York: Nova Science Publishers, Inc.; 2006.


    Google Scholar
     

  • deVries T, Dentiste A, Handiwala L, Jacobs D. Bioavailability and pharmacokinetics of once-daily amantadine extended-release tablets in healthy volunteers: results from three randomized, crossover, open-label, phase 1 studies. Neurol Therapy. 2019;8:449–60.


    Google Scholar
     

  • Hauser RA, Pahwa R, Wargin WA, Souza-Prien CJ, McClure N, Johnson R, et al. Pharmacokinetics of ADS-5102 (amantadine) extended release capsules administered once daily at bedtime for the treatment of dyskinesia. Clin Pharmacokinet. 2019;58:77–88.


    Google Scholar
     

  • Lapshina MA, Shevtsova EF, Grigoriev VV, Aksinenko AY, Ustyugov AA, Steinberg DA, et al. New adamantane-containing Edaravone conjugates as potential neuroprotective agents for ALS treatments. Molecules. 2023;28(22):7567.


    Google Scholar
     

  • Miller R, Moore Dn, Gelinas D, Dronsky V, Mendoza M, Barohn R, et al. Phase III randomized trial of Gabapentin in patients with amyotrophic lateral sclerosis. Neurology. 2001;56(7):843–8.


    Google Scholar
     

  • Miller R, Moore D, Young L, Armon C, Barohn R, Bromberg M, et al. Placebo-controlled trial of Gabapentin in patients with amyotrophic lateral sclerosis. Neurology. 1996;47(6):1383–8.


    Google Scholar
     

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DF, Brown JP, et al. A summary of mechanistic hypotheses of Gabapentin Pharmacology. Epilepsy Res. 1998;29(3):233–49.


    Google Scholar
     

  • Alexander TH, Weisman MH, Derebery JM, Espeland MA, Gantz BJ, Gulya AJ, et al. Safety of high-dose corticosteroids for the treatment of autoimmune inner ear disease. Otology Neurotology. 2009;30(4):443–8.


    Google Scholar
     

  • Derendorf H, Hochhaus G, Meibohm B, Möllmann H, Barth J. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids. J Allergy Clin Immunol. 1998;101(4):S440–6.


    Google Scholar
     

  • Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.


    Google Scholar
     

  • La Porte C, Colbers E, Bertz R, Voncken D, Wikstrom K, Boeree M, et al. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with Rifampin in healthy volunteers. Antimicrob Agents Chemother. 2004;48(5):1553–60.


    Google Scholar
     

  • Kiser JJ, Gerber JG, Predhomme JA, Wolfe P, Flynn DM, Hoody DW. Drug/drug interaction between lopinavir/ritonavir and Rosuvastatin in healthy volunteers. JAIDS J Acquir Immune Defic Syndr. 2008;47(5):570–8.


    Google Scholar
     

  • Hill A, van der Lugt J, Sawyer W, Boffito M. How much Ritonavir is needed to boost protease inhibitors? Systematic review of 17 dose-ranging Pharmacokinetic trials. AIDS. 2009;23(17):2237–45.


    Google Scholar
     

  • Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front Neurosci. 2023;17:1170996.


    Google Scholar
     

  • Fang T, Je G, Pacut P, Keyhanian K, Gao J, Ghasemi M. Gene therapy in amyotrophic lateral sclerosis. Cells. 2022;11(13).

  • Zimmer AM, Pan YK, Chandrapalan T, Kwong RW, Perry SF. Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing? J Exp Biol. 2019;222(7):jeb175737.


    Google Scholar
     

  • Han H. RNA interference to knock down gene expression. Disease Gene Identification: Methods Protocols. 2018:293–302.

  • Wang D, Gao G. State-of-the-art human gene therapy: part Ii. gene therapy strategies and applications. Discov Med. 2014;18(98):151.


    Google Scholar
     

  • Aquino-Jarquin G. CircRNA knockdown based on antisense strategies. Drug Discovery Today. 2024;29(8):104066.


    Google Scholar
     

  • Jakutis G, Stainier DY. Genotype–phenotype relationships in the context of transcriptional adaptation and genetic robustness. Annu Rev Genet. 2021;55(1):71–91.


    Google Scholar
     

  • Camlin NJ. Protein-targeting reverse genetic approaches: the future of oocyte and preimplantation embryo research. Mol Hum Reprod. 2025;31(2):gaaf008.


    Google Scholar
     

  • Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–72.


    Google Scholar
     

  • Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther. 2021;29(12):3345–58.


    Google Scholar
     

  • Saha D, Paliwal B, Modak C, Mandal M, Dan S, Kumar P. Modern therapeutic approaches of neurological disorders: current insights and future perspectives. Evidence-Based Neurological Disorders: Jenny Stanford Publishing; 2024. pp. 383–422.


    Google Scholar
     

  • Kim J, Woo S, De Gusmao CM, Zhao B, Chin DH, DiDonato RL, et al. A framework for individualized splice-switching oligonucleotide therapy. Nature. 2023;619(7971):828–36.


    Google Scholar
     

  • Lin M, Hu X, Chang S, Chang Y, Bian W, Hu R, et al. Advances of antisense oligonucleotide technology in the treatment of hereditary neurodegenerative diseases. Evidence-Based Complement Altern Med. 2021;2021(1):6678422.


    Google Scholar
     

  • Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li H-R, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci. 2013;110(47):E4530–9.


    Google Scholar
     

  • Cantara S, Simoncelli G, Ricci C. Antisense oligonucleotides (ASOs) in motor neuron diseases: a road to cure in light and shade. Int J Mol Sci. 2024;25(9):4809.


    Google Scholar
     

  • Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019;70(1):307–21.


    Google Scholar
     

  • McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front NeuroSci. 2024;18:1414658.


    Google Scholar
     

  • Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene therapy for ALS-A perspective. Int J Mol Sci. 2019;20(18).

  • Ly CV, Miller TM. Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr Opin Neurol. 2018;31(5):648–54.


    Google Scholar
     

  • Bosscher H. Pressure-volume relationships in the spinal Canal and potential neurological complications after epidural fluid injections. Front Pain Res. 2022;3:884277.


    Google Scholar
     

  • Khan SI, Ahmed N, Ahsan K, Abbasi M, Maugeri R, Chowdhury D, et al. An insight into the prospects and drawbacks of stem cell therapy for spinal cord injuries: ongoing trials and future directions. Brain Sci. 2023;13(12):1697.


    Google Scholar
     

  • Chan CH, Desai SR, Hwang NC. Cerebrospinal fluid drains: risks in contemporary clinical practice. J Cardiothorac Vasc Anesth. 2022;36(8):2685–99.


    Google Scholar
     

  • Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener. 2013;8:28.


    Google Scholar
     

  • Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33(9):1345–51.


    Google Scholar
     

  • Ekhtiari Bidhendi E, Bergh J, Zetterström P, Forsberg K, Pakkenberg B, Andersen PM, et al. Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis. Acta Neuropathol. 2018;136(6):939–53.


    Google Scholar
     

  • Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 Familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–42.


    Google Scholar
     

  • Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1–2 trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–19.


    Google Scholar
     

  • Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–110.


    Google Scholar
     

  • Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28.


    Google Scholar
     

  • van den Berg LH, Rothstein JD, Shaw PJ, Babu S, Benatar M, Bucelli RC, et al. Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: a phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study. Lancet Neurol. 2024;23(9):901–12.


    Google Scholar
     

  • Sproviero W, Shatunov A, Stahl D, Shoai M, van Rheenen W, Jones AR, et al. ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging. 2017;51:178. e1-. e9.


    Google Scholar
     

  • Elden AC, Kim H-J, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75.


    Google Scholar
     

  • Tian Y, Heinsinger N, Hu Y, Lim U-M, Wang Y, Fernandis AZ, et al. Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets. PLoS ONE. 2024;19(12):e0308428.


    Google Scholar
     

  • Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science. 2015;349(6248):650–5.


    Google Scholar
     

  • Mathis S, Le Masson G. RNA-Targeted therapies and amyotrophic lateral sclerosis. Biomedicines. 2018;6(1).

  • Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv. 2017;3(12):eaar3952.


    Google Scholar
     

  • Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos CM, et al. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther. 2020;28(4):1177–89.


    Google Scholar
     

  • Duan W, Guo M, Yi L, Liu Y, Li Z, Ma Y, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020;27(3):157–69.


    Google Scholar
     

  • Kim BW, Ryu J, Jeong YE, Kim J, Martin LJ. Human motor neurons with SOD1-G93A mutation generated from CRISPR/Cas9 gene-edited iPSCs develop pathological features of amyotrophic lateral sclerosis. Front Cell Neurosci. 2020;14:604171.


    Google Scholar
     

  • Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol. 2023;11:1143157.


    Google Scholar
     

  • Cetin B, Erendor F, Eksi YE, Sanlioglu AD, Sanlioglu S. Advancing CRISPR genome editing into gene therapy clinical trials: progress and future prospects. Expert Rev Mol Med. 2025:1–96.

  • Dai W-J, Zhu L-Y, Yan Z-Y, Xu Y, Wang Q-L, Lu X-J. CRISPR-Cas9 for in vivo gene therapy: promise and hurdles. Mol Therapy Nucleic Acids. 2016;5.

  • Eski N, Asif H, Crespo J, Bayar Y. Exploring the role of CRISPR-Cas9 in genetic engineering: Advancements, Applications, and ethical issue. Lond J Interdisciplinary Sci. 2025;4:38–51.


    Google Scholar
     

  • Stoica L, Sena-Esteves M. Adeno associated viral vector delivered RNAi for gene therapy of SOD1 amyotrophic lateral sclerosis. Front Mol Neurosci. 2016;9:56.


    Google Scholar
     

  • Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96.


    Google Scholar
     

  • Li J-H, Liu J-L, Zhang K-K, Chen L-J, Xu J-T, Xie X-L. The adverse effects of prenatal METH exposure on the offspring: a review. Front Pharmacol. 2021;12:715176.


    Google Scholar
     

  • Gouel F, Rolland AS, Devedjian JC, Burnouf T, Devos D. Past and future of neurotrophic growth factors therapies in ALS: from single neurotrophic growth factor to stem cells and human platelet lysates. Front Neurol. 2019;10:835.


    Google Scholar
     

  • Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. 2010;61(1):14–26.


    Google Scholar
     

  • Cheng W, Huang J, Fu XQ, Tian WY, Zeng PM, Li Y, et al. Intrathecal delivery of AAV-NDNF ameliorates disease progression of ALS mice. Mol Ther. 2023;31(11):3277–89.


    Google Scholar
     

  • Costa-Verdera H, Unzu C, Valeri E, Adriouch S, González Aseguinolaza G, Mingozzi F, et al. Understanding and tackling immune responses to adeno-associated viral vectors. Hum Gene Ther. 2023;34(17–18):836–52.


    Google Scholar
     

  • Chamberlain K, Riyad JM, Weber T. Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Therapy Methods. 2016;27(1):1–12.


    Google Scholar
     

  • Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: lessons learned from clinical experience with AAV vectors. Archives De Pédiatrie. 2023;30(8):S846–52.


    Google Scholar
     

  • Fu X, Suo H, Zhang J, Chen D. Machine-learning-guided directed evolution for AAV capsid engineering. Curr Pharm Design. 2024;30(11):811–24.


    Google Scholar
     

  • Poulin-Brière A, Rezaei E, Pozzi S. Antibody-Based therapeutic interventions for amyotrophic lateral sclerosis: A systematic literature review. Front Neurosci. 2021;15:790114.


    Google Scholar
     

  • Cykowski MD, Dickson DW, Powell SZ, Arumanayagam AS, Rivera AL, Appel SH. Dipeptide repeat (DPR) pathology in the skeletal muscle of ALS patients with C9ORF72 repeat expansion. Acta Neuropathol. 2019;138(4):667–70.


    Google Scholar
     

  • Nguyen L, Montrasio F, Pattamatta A, Tusi SK, Bardhi O, Meyer KD, et al. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model. Neuron. 2020;105(4):645–e6211.


    Google Scholar
     

  • Steiner JP, Bachani M, Malik N, DeMarino C, Li W, Sampson K, et al. Human endogenous retrovirus K envelope in spinal fluid of amyotrophic lateral sclerosis is toxic. Ann Neurol. 2022;92(4):545–61.


    Google Scholar
     

  • Halcrow PW, Quansah DN, Kumar N, Steiner JP, Nath A, Geiger JD. HERV-K (HML-2) envelope protein induces mitochondrial depolarization and neurotoxicity via endolysosome iron dyshomeostasis. J Neurosci. 2024;44(14).

  • Garcia-Montojo M, Simula ER, Fathi S, McMahan C, Ghosal A, Berry JD, et al. Antibody response to HML‐2 May be protective in amyotrophic lateral sclerosis. Ann Neurol. 2022;92(5):782–92.


    Google Scholar
     

  • Perrin S, Ladha S, Maragakis N, Rivner MH, Katz J, Genge A, et al. Safety and tolerability of Tegoprubart in patients with amyotrophic lateral sclerosis: A phase 2A clinical trial. PLoS Med. 2024;21(10):e1004469.


    Google Scholar
     

  • Mu L, Dong R, Guo B. Biomaterials-based cell therapy for myocardial tissue regeneration. Adv Healthc Mater. 2023;12(10):2202699.


    Google Scholar
     

  • Rajabi M, Shafaeibajestan S, Asadpour S, Alyari G, Taei N, Kohkalani M, et al. Primary progressive multiple sclerosis: new therapeutic approaches. Neuropsychopharmacol Rep. 2025;45(3):e70039.


    Google Scholar
     

  • Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Res. 2014;104(3):399–411.


    Google Scholar
     

  • Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther. 2012;20(6):1116–30.


    Google Scholar
     

  • Yavarpour-Bali H, Nakhaei‐Nejad M, Yazdi A, Ghasemi‐Kasman M. Direct conversion of somatic cells towards oligodendroglial lineage cells: A novel strategy for enhancement of Myelin repair. J Cell Physiol. 2020;235(3):2023–36.


    Google Scholar
     

  • Raoufinia R, Arabnezhad A, Keyhanvar N, Abdyazdani N, Saburi E, Naseri N, et al. Leveraging stem cells to combat hepatitis: a comprehensive review of recent studies. Mol Biol Rep. 2024;51(1):459.


    Google Scholar
     

  • Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Translational Med. 2024;22(1):435.


    Google Scholar
     

  • Memarpour S, Raoufinia R, Saburi E, Razavi MS, Attaran M, Fakoor F, et al. The future of diabetic wound healing: unveiling the potential of mesenchymal stem cell and exosomes therapy. Am J Stem Cells. 2024;13(2):87–100.


    Google Scholar
     

  • Raoufinia R, Rahimi Hr, Keyhanvar N, Moghbeli M, Abdyazdani N, Rostami M, et al. Advances in treatments for epidermolysis Bullosa (EB): emphasis on stem Cell-Based therapy. Stem Cell Reviews Rep. 2024;20(5):1200–12.


    Google Scholar
     

  • Salimi Z, Rostami M, Milasi YE, Mafi A, Raoufinia R, Kiani A, et al. Unfolded protein response signaling in hepatic stem cell activation in liver fibrosis. Curr Protein Pept Sci. 2024;25(1):59–70.


    Google Scholar
     

  • Lin S-L. Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells. 2011;29(11):1645–9.


    Google Scholar
     

  • Puri MC, Nagy A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30(1):10–4.


    Google Scholar
     

  • Pototskaya OY, Shevchenko K. Comparative characteristics of human stem cells. Морфологія= Morphologia. 2022;16(2):6–21.


    Google Scholar
     

  • Wang L, Liu G, Zheng L, Long H, Liu Y. A new era of gene and cell therapy for cancer: A narrative review. Annals Translational Med. 2023;11(9):321.


    Google Scholar
     

  • Sari BA, Zahra AT, Tasti GP, Maritska Z. Healing the fundamental unit of heredity (gene therapy): current perspective and what the future holds. Mol Cell Biomedical Sci. 2021;5(2):62–7.


    Google Scholar
     

  • Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-generation CAR T-cell therapies. Cancer Discov. 2022;12(7):1625–33.


    Google Scholar
     

  • Sun D, Shi X, Li S, Wang X, Yang X, Wan M. CAR–T cell therapy: A breakthrough in traditional cancer treatment strategies. Mol Med Rep. 2024;29(3):47.


    Google Scholar
     

  • Rathi D, Patel N, Satapathy T. Chimeric antigen receptor T-Cells (CAR T-Cells): an engineered targeted therapy for treatment of cancer. J Drug Delivery Ther. 2024;14(9).

  • Mody H, Sutaria DS, Miles D. Clinical Pharmacology considerations for the Off-the‐Shelf allogeneic cell therapies. Clin Pharmacol Ther. 2024;115(6):1233–50.


    Google Scholar
     

  • Dhakal B, Chhabra S, Savani BN, Hamadani M. Promise and pitfalls of allogeneic chimeric antigen receptor therapy in plasma cell and lymphoid malignancies. Br J Haematol. 2022;197(1):28–40.


    Google Scholar
     

  • Sasu BJ, Lauron EJ, Schulz T, Cheng H-Y, Sommer C. Allogeneic CAR T cell therapy for cancer. Annual Rev Cancer Biology. 2024;8.

  • Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T cells: an alternative to overcome challenges of CAR T cell therapy in glioblastoma. Front Immunol. 2021;12:640082.


    Google Scholar
     

  • Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, et al. Perinatal tissue-derived stem cells: an emerging therapeutic strategy for challenging neurodegenerative diseases. Int J Mol Sci. 2024;25(2):976.


    Google Scholar
     

  • Je G, Keyhanian K, Ghasemi M. Overview of stem cells therapy in amyotrophic lateral sclerosis. Neurol Res. 2021;43(8):616–32.


    Google Scholar
     

  • Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, et al. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis. Cells. 2023;12(6):971.


    Google Scholar
     

  • Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, et al. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther. 2024;24(9):933–54.


    Google Scholar
     

  • Karpe Y, Chen Z, Li X-J. Stem cell models and gene targeting for human motor neuron diseases. Pharmaceuticals. 2021;14(6):565.


    Google Scholar
     

  • Gomez AM, Staff NP, Ekker SC. 482 translational gene editing strategies for Understanding and treating CHCHD10-associated amyotrophic lateral sclerosis (ALS). J Clin Translational Sci. 2025;9(s1):143.


    Google Scholar
     

  • Patmanathan SN, Gnanasegaran N, Lim MN, Husaini R, Fakiruddin KS, Zakaria Z. CRISPR/Cas9 in stem cell research: current application and future perspective. Curr Stem Cell Res Therapy. 2018;13(8):632–44.


    Google Scholar
     

  • Liu B, Li M, Zhang L, Chen Z, Lu P. Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regeneration Res. 2022;17(8):1633–9.


    Google Scholar
     

  • Lunn JS, Sakowski SA, Feldman EL. Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells. 2014;32(5):1099–109.


    Google Scholar
     

  • Lu L, Deng Y, Xu R. Current potential therapeutics of amyotrophic lateral sclerosis. Front Neurol. 2024;15:1402962.


    Google Scholar
     

  • Khalid MU, Masroor T. The promise of stem cells in amyotrophic lateral sclerosis: a review of clinical trials. JPMA J Pakistan Med Association. 2023;73(2):S138–42.


    Google Scholar
     

  • Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, et al. Stem cell therapy for the treatment of amyotrophic lateral sclerosis: comparison of the efficacy of mesenchymal stem cells, neural stem cells, and induced pluripotent stem cells. Biomedicines. 2024;13(1):35.


    Google Scholar
     

  • Rae SB, DeGiorgio CM. Ethical issues in fetal tissue transplants. Linacre Q. 1991;58(3):12–32.


    Google Scholar
     

  • Mazzini L, Vescovi A, Cantello R, Gelati M, Vercelli A. Stem cells therapy for ALS. Expert Opin Biol Ther. 2016;16(2):187–99.


    Google Scholar
     

  • Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007;25(3):646–54.


    Google Scholar
     

  • Lescaudron L, Naveilhan P, Neveu I. The use of stem cells in regenerative medicine for parkinson’s and huntington’s diseases. Curr Med Chem. 2012;19(35):6018–35.


    Google Scholar
     

  • Cave JW, Wang M, Baker H. Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons. Front NeuroSci. 2014;8:16.


    Google Scholar
     

  • Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J Royal Soc Interface. 2010;7(suppl6):S753–63.


    Google Scholar
     

  • Su Z, Dong H, Fang X, Zhang W, Duan H. Frontier progress and translational challenges of pluripotent differentiation of stem cells. Front Genet. 2025;16:1583391.


    Google Scholar
     

  • Nishio M, Nakahara M, Yuo A, Saeki K. Human pluripotent stem cells: towards therapeutic development for the treatment of lifestyle diseases. World J Stem Cells. 2016;8(2):56.


    Google Scholar
     

  • Mohseni R, Hamidieh AA, Verdi J, Shoae-Hassani A. Safe transplantation of pluripotent stem cell by preventing teratoma formation. Stem Cell Res Therapy. 2014;4(6):104172.


    Google Scholar
     

  • Liu SP, Fu RH, Huang YC, Chen SY, Chien YJ, Hsu CY, et al. Induced pluripotent stem (iPS) cell research overview. Cell Transplant. 2011;20(1):15–9.


    Google Scholar
     

  • Dupuis V, Oltra E. Methods to produce induced pluripotent stem cell-derived mesenchymal stem cells: mesenchymal stem cells from induced pluripotent stem cells. World J Stem Cells. 2021;13(8):1094–111.


    Google Scholar
     

  • Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, et al. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet. 2010;19(17):3440–56.


    Google Scholar
     

  • Riley J, Glass J, Feldman EL, Polak M, Bordeau J, Federici T, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery. 2014;74(1):77–87.


    Google Scholar
     

  • Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. 2012;30(6):1144–51.


    Google Scholar
     

  • Nowicka N, Juranek J, Juranek JK, Wojtkiewicz J. Risk factors and emerging therapies in amyotrophic lateral sclerosis. Int J Mol Sci. 2019;20(11):2616.


    Google Scholar
     

  • Chavda VP, Patel C, Modh D, Ertas YN, Sonak SS, Munshi NK, et al. Therapeutic approaches to amyotrophic lateral sclerosis from the lab to the clinic. Curr Drug Metab. 2022;23(3):200–22.


    Google Scholar
     

  • Brenner D, Freischmidt A. Update on genetics of amyotrophic lateral sclerosis. Curr Opin Neurol. 2022;35(5):672–7.


    Google Scholar
     

  • Yun Y, Ha Y. CRISPR/Cas9-mediated gene correction to understand ALS. Int J Mol Sci. 2020;21(11):3801.


    Google Scholar
     

  • Shi Y, Zhao Y, Lu L, Gao Q, Yu D, Sun M. CRISPR/Cas9: implication for modeling and therapy of amyotrophic lateral sclerosis. Front NeuroSci. 2023;17:1223777.


    Google Scholar
     

  • Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379(6629):eadd8643.


    Google Scholar
     

  • Kumar R, Bargoti T, Sengar S, Singh D, Nain V. A decade of genome editing: comparative review of Zfn, Talen, and Crispr/Cas9. Int J Innovative Sci Res Technol. 2025;10(4):3708–17.


    Google Scholar
     

  • Cudkowicz ME, Lindborg SR, Goyal NA, Miller RG, Burford MJ, Berry JD, et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve. 2022;65(3):291–302.


    Google Scholar
     

  • Aricha R, Abramov N, Semo J, Kaspi H, Lebovits C, Kern R. MSC-NTF cell immunomodulation: effects on T and B regulatory cells (790). Neurology. 2020;94(15supplement):790.


    Google Scholar
     

  • Morata-Tarifa C, Azkona G, Glass J, Mazzini L, Sanchez-Pernaute R. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. Npj Regenerative Med. 2021;6(1):20.


    Google Scholar
     

  • Aljabri A, Halawani A, Bin Lajdam G, Labban S, Alshehri S, Felemban R. The safety and efficacy of stem cell therapy as an emerging therapy for ALS: A systematic review of controlled clinical trials. Front Neurol. 2021;Volume 12–2021.

  • Goutman SA, Savelieff MG, Sakowski SA, Feldman EL. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs. 2019;28(6):525–43.


    Google Scholar
     

  • Agrawal S, Vaidya S, Patel J, Jirvankar P, Gurjar P. Challenges and pathways in regulating Next-Gen biological therapies. Current pharmaceutical biotechnology.

  • Shah V, Al-Shehab U, Patel K, King A. Mesenchymal Stem Cell Therapy for Amyotrophic Lateral Sclerosis. 2023.

  • Janson C, Ramesh T, During M, Leone P, Heywood J. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis. J Hematotherapy Stem Cell Res. 2001;10(6):913–5.


    Google Scholar
     

  • Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disorders. 2003;4(3):158–61.


    Google Scholar
     

  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, et al. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res. 2006;28(5):523–6.


    Google Scholar
     

  • Cashman E, Skinner LJ, Timon C. Thyroid swelling: an unusual presentation of a cervical sympathetic chain Schwannoma. Medscape J Med. 2008;10(8):201.


    Google Scholar
     

  • Deda H, Inci MC, Kürekçi AE, Sav A, Kayihan K, Ozgün E, et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 2009;11(1):18–25.


    Google Scholar
     

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.


    Google Scholar
     

  • Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A phase I clinical trial. Exp Neurol. 2010;223(1):229–37.


    Google Scholar
     

  • Sharma AK, Sane HM, Paranjape AA, Gokulchandran N, Nagrajan A, D’sa M, et al. The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in amyotrophic lateral Sclerosis-a retrospective controlled study. Am J Stem Cells. 2015;4(1):50.


    Google Scholar
     

  • Mazzini L, Gelati M, Profico DC, Sgaravizzi G, Projetti Pensi M, Muzi G, et al. Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Translational Med. 2015;13:1–16.


    Google Scholar
     

  • Rushkevich YN, Kosmacheva S, Zabrodets G, Ignatenko S, Goncharova N, Severin I, et al. The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull Exp Biol Med. 2015;159(4):576–81.


    Google Scholar
     

  • Oh K-W, Moon C, Kim HY, Oh S-i, Park J, Lee JH, et al. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Translational Med. 2015;4(6):590–7.


    Google Scholar
     

  • Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73(3):337–44.


    Google Scholar
     

  • Kuzma-Kozakiewicz M, Marchel A, Kaminska A, Gawel M, Sznajder J, Figiel-Dabrowska A, et al. Intraspinal transplantation of the adipose Tissue-Derived regenerative cells in amyotrophic lateral sclerosis in accordance with the current experts’ recommendations: choosing optimal monitoring tools. Stem Cells Int. 2018;2018(1):4392017.


    Google Scholar
     

  • Berry JD, Cudkowicz ME, Windebank AJ, Staff NP, Owegi M, Nicholson K, et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: safety, clinical, and biomarker results. Neurology. 2019;93(24):e2294–305.


    Google Scholar
     

  • Geijo-Barrientos E, Pastore-Olmedo C, De Mingo P, Blanquer M, Gómez Espuch J, Iniesta F, et al. Intramuscular injection of bone marrow stem cells in amyotrophic lateral sclerosis patients: a randomized clinical trial. Front NeuroSci. 2020;14:195.


    Google Scholar
     

  • Petrou P, Kassis I, Yaghmour NE, Ginzberg A, Karussis D. A phase II clinical trial with repeated intrathecal injections of autologous mesenchymal stem cells in patients with amyotrophic lateral sclerosis. Front Bioscience-Landmark. 2021;26(10):693–706.


    Google Scholar
     

  • Tavakol-Afshari J, Boroumand AR, Farkhad NK, Moghadam AA, Sahab-Negah S, Gorji A. Safety and efficacy of bone marrow derived-mesenchymal stem cells transplantation in patients with amyotrophic lateral sclerosis. Regenerative Therapy. 2021;18:268–74.


    Google Scholar
     

  • Baloh RH, Johnson JP, Avalos P, Allred P, Svendsen S, Gowing G, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med. 2022;28(9):1813–22.


    Google Scholar
     

  • Gotkine M, Caraco Y, Lerner Y, Blotnick S, Wanounou M, Slutsky SG, et al. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J Translational Med. 2023;21(1):122.


    Google Scholar
     

  • Yamashita T, Nakano Y, Sasaki R, Tadokoro K, Omote Y, Yunoki T, et al. Safety and clinical effects of a muse cell-based product in patients with amyotrophic lateral sclerosis: results of a phase 2 clinical trial. Cell Transplant. 2023;32:09636897231214370.


    Google Scholar
     

  • Staff N, Oskarsson B, Muzyka I, Madigan N, Mester C, Figdore D, et al. editors. Results from a phase 2 clinical trial of repeated intrathecal autologous Adipose-derived MSCs in ALS (S5. 004). Lippincott Williams & Wilkins Hagerstown, MD; 2024.

  • Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Farkhad NK, Khodadoust MA, Tavakol-Afshari J. Evaluation of the safety and efficacy of repeated mesenchymal stem cell transplantations in ALS patients by investigating patients’ specific immunological and biochemical biomarkers. Diseases. 2024;12(5):99.


    Google Scholar
     

  • Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Farkhad NK, Khodadoust MA, Ganjali R et al. Evaluation of Safety and Efficacy of Repeated Mesenchymal Stem Cell Transplantation in Patients with Amyotrophic Lateral Sclerosis (ALS) by Investigating Patient’s Specific microRNAs as Novel Biomarkers: A Clinical Trial Study. Curr Stem Cell Res Ther. 2025.

  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Internet Connectz
    Logo
    Internet Connectz
    Privacy Overview

    This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

    Shopping cart